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Abstract 
This paper presents a brief overview of gravitational waves.  Their 
propagation and generation are presented in more detail, with 
references to detailed derivations.  The reader is assumed to be 
familiar with basic concepts of general relativity, but a brief review 
of relevant concepts is provided. 
 
 

1 Introduction 
 
From general relativity, gravity can be expressed as space-time curvature caused 
by the presence of mass [1].  Quadrupole accelerations of mass distributions will 
produce ripples in space-time.  These ripples propagate at the speed of light, and 
are known as gravitational waves. 
 
Gravitational waves were first discussed by Laplace in 1805, when he explored 
the results of hypothetical finite-speed gravitational influence [2].  He predicted 
that the angular momentum of a binary star system would decrease with time, a 
result that would now be interpreted as angular momentum being carried away by 
gravitational waves. 
 
The modern form of gravitational waves was first presented in Einstein’s 1915 
publication of general relativity [1], as wave-like solutions to a linearized form of 
the equations.  They were not widely studied until the 1950s, when it was proved 
by Hermann Bondi that gravitational waves are physically observable and in fact 
carry energy [2]. 
 
The only confirmed evidence for gravitational waves, so far, is the observed 
decay of a binary pulsar system matching the predictions of decay by emission of 
gravitational radiation.  A Nobel Prize was awarded in 1993 for this discovery [2].  
While there are several ongoing efforts, gravitational waves have not yet been 
directly detected. 
 



Gravitational waves have the potential to be very useful in the field of astronomy.  
Being very different in nature from electromagnetic waves, they can reveal 
otherwise unobservable information.  As they have minimal interaction with 
matter, they can penetrate barriers, such as dust clouds, that would scatter or 
absorb electromagnetic emissions.  Being produced by coherent mass movements, 
they also reveal the internal structure of massive objects, whereas electromagnetic 
radiation usually carries incoherent surface information. 
 
 
2 General Relativity 
 
In general relativity, space-time is a four-dimensional surface where gravity is a 
result of curvature.  Space-time curves in response to matter, and matter moves in 
response to the curvature.  This curvature of space is given by the symmetric 
second-rank metric tensor g.  The metric defines the notion of distance within a 
space, describing the vector magnitude: 
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where µx  is the 4-vector (t, x, y, z).  The Minkowski metric µνη  represents flat 
(0-curvature) space: 
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The Einstein Field Equations (EFE) define the relationship between the metric 
tensor and the energy-momentum tensor: 
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The energy-momentum tensor T is a measure of the presence of matter and energy 
in the local space.  µνR  is the Ricci tensor, and R is the scalar curvature.  These 
can be qualitatively viewed as the Laplacian of the metric tensor g [4 appendix B]. 
 
 



3 Propagation 
 
For the purposes of this discussion, gravitational waves will only be considered in 
an otherwise flat space-time.  That is, they will be treated as weak perturbations of 
the flat Minkowski space described above.  Using this perturbation analysis, 
gravitational waves are transverse quadrupole plane waves, with a velocity of c.  
The waves are area preserving in the transverse plane, such that if they expand 
space-time along one transverse direction, they will compress it in the other.  This 
results in two orthogonal polarizations, known as the “plus” and “cross” 
polarizations, offset by 45 degrees (Figure 1). 
 
Specifically, gravitational waves can be approximated as a small perturbation µνh  
of the flat-space Minkowski metric µνη : 

µνµνµν η hg +=  where 1<<µνh  
 
Expanding Einstein’s field equations in h, they can be linearized (see appendix B 
of reference [4] for a derivation) such that in the Lorentz gauge µνh  can be related 
to the stress-energy tensor: 
 □ µν

µν πGTh 16−=  (1) 
with □ being the D’Alembertian. 
 
In the limit of flat space-time as specified initially, where the perturbation is small 
and no significant mass is present, 0≈µνT , so 
 □ 0=µνh  (2) 
 
This is recognizable as a wave equation.  Solving for µνh  as a traveling transverse 
wave in the +z direction at velocity c results in 
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where k  is a constant 4-vector.  +h  and ×h  are the two possible polarizations of 
the gravitational wave.  See reference [4] for a derivation of this solution. 
 



As a gravitational wave passes a point, the perturbation of the local metric 
deforms space.  This may cause the separation between nearby points to change.  
The effect of each polarization is shown in Figure 1.  If a + polarized wave 
interacts with two particles on the x-axis as shown, the space between them will 
expand and contract at the frequency of the gravitational wave, and the separation 
of the two points along the y-axis will behave similarly, but out of phase by π.  
Points on the x and y axes would be unaffected by a × polarized wave. 
 
 
4 Generation 
 
The dominant producer of gravitational waves is a change of the quadrupole 
moment of the mass distribution.  Because there is a single charge of mass, the 
dipole will always be the center of mass of the system, which is constant by 
conservation of momentum.  Therefore, only asymmetric accelerations in a 
system of mass will produce gravitational waves. 
 
Instead of solving for the massless equation, the linearized EFE can be written 
with nonzero T: 
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This can be solved via a multipole expansion.  Taking the lowest-order 
contribution, 
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where the time derivatives are taken at the retarded time t – r / c, r is the distance 
to the source, ijQ  is the quadrupole moment, and h is the amplitude.  See 
reference [4] for a detailed derivation of this. 
 
 
5 Sources 
 
Possible sources of gravitational waves, therefore, must by asymmetrically 
oscillating.  Especially interesting candidates are compact binaries, such as a 
binary neutron star or black hole.  Because of the compact size of these objects, 
the second time derivative of the quadrupole moment can be very large, and 
therefore will present the best chance of detection.  At least one such binary has 
been optically observed to be loosing angular momentum, presumably due to 



gravitational radiation, and detection via gravitational waves would provide an 
additional test of general relativity. 
 
Most moving astronomical objects with asymmetric mass distributions can emit 
gravitational waves.  Other interesting astronomical objects with large second-
derivative quadrupole terms are rotating neutron stars with asymmetric mass 
distribution, collapsing supernovae with nonuniform initial density, and merging 
black holes. 
 
 
6 Detection 
 
Detection of gravitational waves is extremely difficult.  While sources emit 
enormous amount of energy, space-time is elastically stiff, and therefore 
disturbances are very small.  For example, if a source had an off-axis kinetic 
energy of one solar mass and was located in the Virgo cluster, 2110−≤h  by the 
equation presented in section 3 [5]. This corresponds to a proportional length 
change in a detector, LLh /2/ ∆= , requiring extremely precise detectors. 
 
Many efforts have been made to detect gravitational waves, but none has yet met 
with success.  In the past, most experiments were resonant bar detectors.  These 
consist of a large, precisely sized metal bar, at a known temperature.  As 
gravitational waves pass, they could stretch the metal bar, whose lattice would 
resist the change.  The resonant bar detectors were designed to sustain a resonance 
if this happened, enabling detection of the passing.  The first resonant bar was 
constructed in the early 1970’s by Joseph Weber, and had a strain sensitivity of 
approximately 10-15, far too high for potential sources.  No reproducible results 
have been found with this method. 
 
Most recent detectors use interferometry.  Michelson interferometers with very 
long arms attempt to detect length changes over these arms, which would occur 
during the passage of a gravitational wave.  Early designs with 20-40m arms had 
strain sensitivities on the order of 10-20, still too low to distinguish a signal.  
Current efforts have much larger arms, and projected strain sensitivities around 
10-22.  LIGO, the Laser Interferometer Gravitational wave Observatory, is one 
such project.  It has several interferometer sites, one in Hanford, WA with 2km 
arms.  A similar project, GEO600, is based in Germany with 600m arms, and 
VIRGO in France has 3km arms.  All these facilities are currently undergoing 
commissioning, and results are expected soon.  The first space-based GW 



interferometer, LISA, is planned to launch in 2013, with arm lengths of 5 million 
km.  It has a projected sensitivity of around 10-23, and should definitely detect 
gravitational waves. 
 
 
7 Conclusion 
 
Gravitational waves can be treated as perturbations of the local space-time metric.  
Solving for these perturbations in otherwise flat space-time (no appreciable matter 
or energy present) using a linearized form of the Einstein Field Equations results 
in transverse traveling wave solutions with two polarizations, and velocity c.  If 
the same linearized EFE are solved with a nonzero matter-energy tensor, the 
lowest-order term is due to quadrupole acceleration. 
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Figure 1: Plus (+) and cross (×) polarizations of gravitational waves 
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